Уважаемые коллеги. Размещение авторского материала на страницах электронного справочника "Информио" является бесплатным. Для получения бесплатного свидетельства необходимо оформить заявку
Положение о размещении авторского материалаМашина Тьюринга - одно из самых интригующих и захватывающих интеллектуальных открытий 20-го века. Это простая и полезная абстрактная модель вычислений (компьютерных и цифровых), которая является достаточно общей для воплощения любой компьютерной задачи. Благодаря простому описанию и проведению математического анализа она образует фундамент теоретической информатики. Это исследование привело к более глубокому познанию цифровых компьютеров и исчислений, включая понимание того, что существуют некоторые вычислительные проблемы, не решаемые на общих пользовательских ЭВМ.
Алан Мэтисон Тьюринг, 23 июня 1912 — 7 июня 1954 — английский математик, логик, криптограф, оказавший существенное влияние на развитие информатики. Кавалер Ордена Британской империи (1945), член Лондонского королевского общества (1951). Предложенная им в 1936 году абстрактная вычислительная «Машина Тьюринга», которую можно считать моделью компьютера общего назначения, позволила формализовать понятие алгоритма и до сих пор используется во множестве теоретических и практических исследований.
Машина Тьюринга является вычислительным устройством, состоящим из головки чтения/записи (или «сканера») с бумажной лентой, проходящей через него. Лента разделена на квадраты, каждый из которых несет одиночный символ - "0" или "1". Назначение механизма состоит в том, что он выступает и как средство для входа и выхода, и как рабочая память для хранения результатов промежуточных этапов вычислений.
Каждая такая машина состоит из двух составляющих:
1) Неограниченная лента. Она является бесконечной в обе стороны и разделена на ячейки.
2) Автомат – управляемая программа, головка-сканер для считывания и записи данных. Она может находиться в каждый момент в одном из множества состояний.
Как работает механизм
Машина Тьюринга имеет принципиальное отличие от вычислительных устройств – ее запоминающее приспособление имеет бесконечную ленту, тогда как у цифровых аппаратов такое устройство имеет полосу определенной длины. Каждый класс заданий решает только одна построенная машина Тьюринга. Задачи иного вида предполагают написание нового алгоритма. Управляющее устройство, находясь в одном состоянии, может передвигаться в любую сторону по ленте. Оно записывает в ячейки и считывает с них символы конечного алфавита. В процессе перемещения выделяется пустой элемент, который заполняет позиции, не содержащие входные данные. Алгоритм для машины Тьюринга определяет правила перехода для управляющего устройства. Они задают головке записи-чтения такие параметры: запись в ячейку нового символа, переход в новое состояние, перемещение влево или вправо по ленте.
Функции машины Тьюринга
В решении алгоритмов часто требуется реализация функции. В зависимости от возможности написания цепочки для вычисления, функцию называют алгоритмически разрешимой или неразрешимой. В качестве множества натуральных или рациональных чисел, слов в конечном алфавите N для машины рассматривается последовательность множества В – слова в рамках двоичного кодового алфавита В={0.1}. Также в результат вычисления учитывается «неопределенное» значение, которое возникает при «зависании» алгоритма. Для реализации функции важно наличие формального языка в конечном алфавите и решаемость задачи распознавания корректных описаний.
Программа для устройства
Программы для механизма Тьюринга оформляются таблицами, в которых первые строка и столбец содержат символы внешнего алфавита и значения возможных внутренних состояний автомата - внутренний алфавит. Табличные данные являются командами, которые воспринимает машина Тьюринга. Решение задач происходит таким образом: буква, считываемая головкой в ячейке, над которой она в данный момент находится, и внутреннее состояние головки автомата обусловливают, какую из команд необходимо выполнять. Конкретно такая команда находится на пересечении символов внешнего алфавита и внутреннего, находящихся в таблице.
Машины Тьюринга были введены для доказательства несуществования алгоритма решения тех или иных задач. Однако именно развитие вычислительной техники стимулировало развитие такого направления в математике (и информатике), как теория сложности алгоритмов. Выяснилось, что для огромного класса задач, имеющих алгоритмы их решения, программы, реализующие эти алгоритмы для очень многих исходных данных, «зависают», то есть время их работы настолько велико, что приходится искать приближенные методы их решения, причем, чем больше точность решения задачи, тем, дольше работает программа.
Машины Тьюринга оказались очень удобным математическим аппаратом, позволяющим получать оценки как времени реализации алгоритмов (в частности, и на реальных компьютерах), так и размера памяти, требуемой для вычислений.
В разных устройствах — скажем, в телевизоре и в стиральной машине, — может использоваться одна и та же микросхема процессора, — это воплощение одной из идей Тьюринга.
И то, что одна и та же программа может использоваться в самых разных компьютерах, работать с самой разной аппаратурой и выглядеть одинаково, это тоже его идея. Тогда это называлось идеей хранимой программы (программа хранится в памяти и определяет поведение машины), и ещё была идея универсальной машины, — есть машина, которая может делать все, что может делать любая другая машина.
Если бы не Тьюринг, наверно, это придумал бы кто-то другой, он не был единственным, кто над этим работал, но так или иначе такое абстрактное теоретическое устройство оказалось одним из самых важных изобретений в XX веке.
Представьте себе, как в XIX веке (это написано у Лотмана в его «Беседах о русской культуре») играли в карты. В отличие от нынешней ситуации, когда карты тасуют, тогда карты продавались уже перетасованными заранее.
Поэтому дворяне, которые играли в серьезные игры, каждый раз брали новую колоду и играли с ней. После этого она выбрасывалась и поступала, как пишет Лотман, в распоряжение слуг, которые играли в своего «подкидного дурака».
Так вот, представим себе, что есть фабрика, которая выпускает такие перетасованные колоды и есть машина, которая печатает карты, а есть, которая их тасует — эта машина их как-то внутри себя тасует, потом выкладывает, запаковывает, и они поступают в продажу. Теперь представим себе, что на этой фабрике есть, как говорили в советское время, «отдел технического контроля», который должен проверять, хорошо ли они перетасованы.
Время от времени он из пачки сделанных колод достаёт одну колоду, распаковывает и смотрит, хорошо ли она перетасована. С одной стороны, он должен что-то контролировать, то есть если он никогда никакие колоды не будет браковать как негодные, то зачем он вообще нужен? А с другой стороны, непонятно, что он может контролировать, потому что вся идея того, что карты хорошо перетасованы, состоит в том, что все варианты, все возможные последовательности карт в колоде, имеют совершенно одинаковую вероятность.
Соответственно, ни одна из них, с точки зрения тасовальной машины, не лучше другой. Почему же мы некоторые колоды (некоторые последовательности карт) бракуем, а некоторые оставляем? Это как-то загадочно.
Если, скажем, все карты идут в порядке возрастания их значения, или сначала идут все красные карты, а потом черные — такие комбинации, вроде бы, надо браковать. Но, с другой стороны, непонятно, чем они хуже других. Одной из попыток ответить на этот вопрос (60-е годы XX века) было понятие сложности, то, что сейчас называется колмогоровская сложность или алгоритмическая сложность [3].
Список использованных источников
Оригинал работы: Машина Тьюринга — одно из важных открытий
Сервис «Комментарии» - это возможность для всех наших читателей дополнить опубликованный на сайте материал фактами или выразить свое мнение по затрагиваемой материалом теме.
Редакция Информио.ру оставляет за собой право удалить комментарий пользователя без предупреждения и объяснения причин. Однако этого, скорее всего, не произойдет, если Вы будете придерживаться следующих правил:
Претензии к качеству материалов, заголовкам, работе журналистов и СМИ в целом присылайте на адрес
Информация доступна только для зарегистрированных пользователей.
Уважаемые коллеги. Убедительная просьба быть внимательнее при оформлении заявки. На основании заполненной формы оформляется электронное свидетельство. В случае неверно указанных данных организация ответственности не несёт.